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A comment on Gans’ stability criterion for 
steady inviscid helical gas flows 
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(Received 10 June 1974) 

Gans’ criterion is shown to be valid for all inviscid non-diffusive flows where the 
radial velocity is everywhere zero and the physical variables are functions of the 
radial distance only. That is, a modified form of the Miles-Howard theorem holds 
for a large class of helical gas flows. 

1. Introduction 
Gans (1975) showed that under certain restrictions (e.g. if the ratio of the 

axial to the azimuthal wavenumber of disturbances is small) the flow of a gas 
through a rotating pipe is linearly stable if and only if a Richardson number 
criterion is satisfied. It is shown here that these restrictions may be relaxed and 
that this criterion, or rather a simple modification of it, is valid for all non- 
diffusive flows where the velocity is of the form 

and where the temperature is also a function of the radius only. The (r,  9, z )  
co-ordinates are cylindrical ones, the x axis coinciding with the axis of the two 
coaxial circular cylinders (radii a and b, 0 < a < b )  between which the flow occurs. 
In  order to make some ready comparisons, an artificial gravity g(r)P is also 
introduced, whereby the fluid is supposedly repulsed from the axis with a force g 
per unit mass. Later g will be set equal to zero. 

V O ( d  4 + wo(4 i2 (1.1) 

2. The basic equations 
The equations of momentum, continuity and compressibility, together with 

the equation of state of the gas, form the fundamental equations. The system is 
perturbed infinitesimally, and effects of thermal diffusion and viscosity are 
ignored, so that small changes in the density occur adiabatically. If the suffix 
zero denotes the basic state, then the equations governing the perturbations are 
(where the symbols have their usual meaning) 

p’ + iApou - (g + vi/r)  p - 2v0p0 w/r = 0 

imp/r + iAp,v +po(v,!, + wo/r) u = 0 
ilcp + iApow +powhu = 0 

(radial momentum), 
(meridional momentum), 

(axial momentum), 
(adiabatic compressibility) cg(iAp +phu) = iAp +phu 

and iAp+p~u+p,,(u’+u/r +imv/r+ikw) = 0 (continuity). 
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(Cf. Gans (1975, equations 2.6). Extra terms arise here because the angular 
velocity is a function of the radial distance.) Here c, denotes the local sound 
speed, p, the basic density and p ,  the basic pressure, which satisfies the equation 

PA = Po(%/r + 9) .  

A prime denotes differentiation with respect to r .  The perturbed pressure is 
assumed to be of the form 

p(r)  exp (im$ +ikz  - iht), etc., 

where m is an integer and k is real, while h may take complex values. Also the 
Doppler frequency A is given by 

A = A(r) = - h + mvo/r + kw,. 
Setting p1 = -ip, immediately dropping the suffix and eliminating v, w and p 
leads to the pair of equations 

u ’ + ~ u  = Ap, p’+/3p = Bu, (2 . la ,  b )  

where u(a)  = u(b) = 0, the boundary condition of zero normal velocity a t  the 
surfaces of the cylinders. Here 

I CI = r-l - 2mb/rA - kwJA +p;/p,c& 

A = A/cgpo- m2/r2p,A - k2/poA, 

,8 = 2mR/rA - ( R2r + g) / c ; ,  

B = 4QQip0/A - AP, + po(Q2r + 9 )  (P;/P, - P A / P O C W .  

Also the notion of angular velocity has been introduced, so that 

R = vo/r, b = a+&&‘. 

3. Remark on the pair of equations (2.1) 
If the substitutions u = PU a n d p  = GP are made, where F(r )  and G(r) do not 

vanish in (a, b ) ,  then subsequent multiplication of (2.1 a) by p/P (the bar denotes 
complex conjugation) and the conjugate of (2.1b) by U / a  and integration over 
(a ,b)  gives 

since UF vanishes a t  the end points. Then since U P  = I U I I PI cis, say, where 6 is 
real, it follows that the integral here has positive-definite (negative-definite) 
imaginary part if Im (AGIF) 

(3.1) 

everywhere in (a, 6) .  Hence if (3.1) is satisfied it follows that the only solution to 
(2.1) is the null solution u = p = 0. Here F and G may be chosen a t  will (provided 
that they are non-vanishing and differentiable). Although they may be chosen 
such that the right-hand side of (3.1) vanishes, it is simplerfor the purpose to set 

0, and 

4 Im (AG/F) Im ( W G )  > la + + F’/F + G’/a12 
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F’/F = G‘G = -&Re (a+P). The conditions then read (with F = G )  I m A  
and 

0,  

4 I m A I m B  > (Im(a+P))2.  ( 3 4  

F need not be found explicitly since it does not appear here. 

4. Results 
The condition (3 .2 )  derived in the previous section is now applied to  (2 .1 ) .  

It is readily seen that the transformation F required can be selected such that it is 
non-vanishing in (a ,  b )  provided that Im h 5 0. Application of the criterion (3 .2 )  
shows that the solution of (2 .1 )  is null if Im h + 0,  and 

4(IR12 /~g+m2/r2+k2)  [4Qf i+  (Q2r+g)  ( p h / p o - p 6 / c ~ P ~ )  + IAl’I 
> [kw;+2m(Q+$.)/rI2 (4.1) 

everywhere in (a, b) .  From this result maximum growth rates and a stability 
criterion follow. If IAl is replaced in (4 .1 )  by A, and the inequality sign is changed 
to one of equality, then the maximum positive root of the resulting equation is 
an upper bound to the growth rate. For the stability criterion, it can be seen that 
it is sufficient for stability that the inequality 

holds everywhere in (a, b ) .  The maximum value of the right-hand side (for 
fixed r )  when both m and k range over ( - co, co) occurs when 

kr/m = 4 / 2 ( Q  + a), 
when it takes the value 

it follows that if 

2w;z + (Q  + fi)? 

(9  + w (PAlPO -PA/GEPo) > 2[wA2 + (4 - v0/421 

N2 > *(Vh2 + Wh”. 

- 
fi-Q = $yQ’ = 1 v’ Recalling that 2 (  o-vo/r) 

(4 .2 )  

everywhere in (a,  b)  then the flow is stable. I n  the limit r -+ co, this reduces to the 

(4 .3 )  
Miles-Howard theorem 

N is the Brunt-Vaisala frequency. (The direction of the r axis should be reversed 
if it is to be in the ‘upwards’ direction, i.e. against gravity.) Setting g = 0,  it is 
seen that in the case vo/r = constant = Q inequality (4 .2 )  reduces to 

Iwhj < 2 ( y -  i)* Q2r/co, (4 .4 )  

if the temperature is constant, which is Gans’ criterion for axial flows. Inequality 
(4 .2 )  is now seen t,o be a sufficient condition for stability provided that the 
radial velocity in the basic flow is zero everywhere, that diffusion and viscous 
effects are negligible, and that the velocity and temperature depend only on the 
radial distance from the axis, the radial profiles being differentiable functions of 
the radius r .  
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